Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats.
نویسندگان
چکیده
Spinal cord injury causes progressive secondary tissue degeneration, leaving many injured people with neurological disabilities. There are no satisfactory neuroprotective treatments. Protein tyrosine phosphatases inactivate neurotrophic factor receptors and downstream intracellular signaling molecules. Thus, we tested whether the peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV(phen)], a stable, potent and selective protein tyrosine phosphatase inhibitor, would be neuroprotective after a thoracic spinal cord contusion in adult rats. Intrathecal bpV(phen) infusions through a lumbar puncture rescued dorsal column sensory axons innervating the nucleus gracilis and white matter at the injury epicenter. At the most effective dose, essentially all of these axons and most of the white matter at the epicenter were spared (vs approximately 60% with control infusions). bpV(phen) treatments started 4 h after contusion were fully effective. This treatment greatly improved and normalized sensorimotor function in a grid-walking test and provided complete axonal protection over 6 weeks. The treatment rescued sensory-evoked potentials that disappeared after dorsal column transection. bpV(phen) affected early degenerative mechanisms, because the main effects were seen at 7 d and lasted beyond the treatment period. The neuroprotection appeared to be mediated by rescue of blood vessels. bpV(phen) reduced apoptosis of cultured endothelial cells. These results show that a small molecule, used in a clinically relevant manner, reduces loss of long-projecting axons, myelin, blood vessels, and function in a model relevant to the most common type of spinal cord injury in humans. They reveal a novel mechanism of spinal cord degeneration involving protein tyrosine phosphatases that can be targeted with therapeutic drugs.
منابع مشابه
Protein tyrosine phosphatase inhibition reduces degeneration of dopaminergic substantia nigra neurons and projections in 6-OHDA treated adult rats.
The survival of injured adult dopaminergic substantia nigra pars compacta neurons can be promoted by various neurotrophic factors. Most neurotrophic factor receptors are activated by intracellular tyrosine phosphorylation upon ligand binding and are subsequently inactivated or dephosphorylated by protein tyrosine phosphatases. This raised the possibility that tyrosine phosphatase inhibition mig...
متن کاملStudy of Neuroprotective Effects of Green Tea Antioxidant on Spinal Cord Injury of Rat
Purpose: Recent studies revealed the neuroprotective effects of green tea antioxidant on experimental cerebral ischemia, but these effects on spinal cord injury (SCI) has not yet been studied.Materials and Methods: Rats were randomly divided into three groups of 18 rats each as follows: sham group (laminectomy), control group (SCI) and experimental group (EGCG). Spinal cord samples were taken 2...
متن کاملاثر نوروپروتکتیوی استیل الکارنیتین، پس از ضایعه فشار مکانیکی طناب نخاعی موش صحرایی بالغ
Background and Objective: Despite current efforts for treating the spinal cord injury (SCI), cell therapy and pharmacological methods have a great curing potential in this field. In this study, application of acetyl L carnitine as one of the possible pharmacologic approaches in SCI treatment was investigated. The effect of this material in adult rats suffering from spinal cord compression was e...
متن کاملEffects of Epigallocatechin Gallate on Tissue Lipid Peroxide Levels in Traumatized Spinal Cord of Rat
Objective(s) Recent studies revealed the neuroprotective effects of epigallocatechin gallate (EGCG) on a variety of neural injury .The purpose of this study was to determine the effects of EGCG on the tissue lipid peroxidation after spinal cord injury (SCI). Materials and Methods Rats were randomly divided into four groups of 7 rats each as follows: sham-operated group, trauma group, and EGC...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 29 شماره
صفحات -
تاریخ انتشار 2008